Mastering TensorFlow 1.x

Mastering TensorFlow 1.x
出版时间:2018.1
官网链接:Packt
下载地址:百度网盘(PDF+EPUB)

内容简介:

Book Description

TensorFlow is the most popular numerical computation library built from the ground up for distributed, cloud, and mobile environments. TensorFlow represents the data as tensors and the computation as graphs.

This book is a comprehensive guide that lets you explore the advanced features of TensorFlow 1.x. Gain insight into TensorFlow Core, Keras, TF Estimators, TFLearn, TF Slim, Pretty Tensor, and Sonnet. Leverage the power of TensorFlow and Keras to build deep learning models, using concepts such as transfer learning, generative adversarial networks, and deep reinforcement learning. Throughout the book, you will obtain hands-on experience with varied datasets, such as MNIST, CIFAR-10, PTB, text8, and COCO-Images.

You will learn the advanced features of TensorFlow1.x, such as distributed TensorFlow with TF Clusters, deploy production models with TensorFlow Serving, and build and deploy TensorFlow models for mobile and embedded devices on Android and iOS platforms. You will see how to call TensorFlow and Keras API within the R statistical software, and learn the required techniques for debugging when the TensorFlow API-based code does not work as expected.

The book helps you obtain in-depth knowledge of TensorFlow, making you the go-to person for solving artificial intelligence problems. By the end of this guide, you will have mastered the offerings of TensorFlow and Keras, and gained the skills you need to build smarter, faster, and efficient machine learning and deep learning systems.

What You Will Learn

  • Master advanced concepts of deep learning such as transfer learning, reinforcement learning, generative models and more, using TensorFlow and Keras
  • Perform supervised (classification and regression) and unsupervised (clustering) learning to solve machine learning tasks
  • Build end-to-end deep learning (CNN, RNN, and Autoencoders) models with TensorFlow
  • Scale and deploy production models with distributed and high-performance computing on GPU and clusters
  • Build TensorFlow models to work with multilayer perceptrons using Keras, TFLearn, and R
  • Learn the functionalities of smart apps by building and deploying TensorFlow models on iOS and Android devices
  • Supercharge TensorFlow with distributed training and deployment on Kubernetes and TensorFlow Clusters

Authors

Armando Fandango

Armando Fandango is an accomplished technologist with hands-on capabilities and senior executive level experience with startups and large companies globally. Armando is spearheading Epic Engineering and Consulting Group as Chief Data Scientist. His work spans across diverse industries including FinTech, Banking, BioInformatics, Genomics, AdTech, Utilities and Infrastructure, Traffic and Transportation, Energy, Human Resource, and Entertainment.

Armando has worked for more than ten years in projects involving Predictive Analytics, Data Science, Machine Learning, Big Data, Product Engineering and High-Performance Computing. His research interests span across machine learning, deep learning, algorithmic game theory and scientific computing. Armando has authored book titled “Python Data Analysis – Second Edition” and published research in international journals and conferences.

发表评论

电子邮件地址不会被公开。 必填项已用*标注